

Development of Solar Cells

1st generation

1970s

2nd generation

3rd generation

1980s

1990s

Silicon-based

Monocrystalline Silicon Polycrystalline Silicon

Thin-film

Silicon membrane Compounds (CIGS, CdTe, and GaAs...) Dye-Sensitized Cell (DSC)

Organic Photovoltaic (OPV)
Perovskite Solar Cell (PVSK)

Power Generation of Solar Cells under Different Light Intensities

How Does DSC Work?

Why You Must Have a DSC100?

DSC100 Renewable Energy Power Bank for IoT

A photovoltaic cell that converts visible light into electricity and supplies power to IoT devices

@2023 patent pending

- Install DSC100 and adjust the bracket
- Power IoT devices through Type-C / DC port
- Flip the switch for different output voltages
- Check LiC power through the LED indicator
- Receive devices' data reports

DSC100 Highlights

IP65

Protect DSC100 with Type-C ports from dust and water exposure

Adjustable Bracket

Increase power generation by adjusting the angle of the module

For Dim Environments)

Convert indoor low-density light sources into energy

Lithium Capacitor

Long-lasting lifespan and safer user experience

Parallel Connection

Support high power-consuming devices and receive frequent reports

Connect DSC100 in Parallel

Why you need more than one DSC100?

- Increase the amount of power generated by DSC
- Support devices with higher power consumption
- Receive data reports more frequently
- Optimize performance in dim environments